
pyCarla
Release 0.1

Federico Simonetta

Jan 07, 2023

TABLE OF CONTENTS

1 Installation 3
1.1 TLDR . 3
1.2 1. Installing pycarla . 3
1.3 2. Installing jack . 3
1.4 3. Installing Carla . 4

2 Development setup 5

3 Usage 7
3.1 Carla presets . 7
3.2 Initialization . 7
3.3 Playing and recording one note . 7
3.4 Playing and recording a full MIDI file . 8
3.5 Closing server . 8

4 Classes and functions 9
4.1 Carla . 9
4.2 Jack Server . 10
4.3 Playing MIDI . 10
4.4 Recording Audio . 11

5 Why so many external dependencies? 13

6 Credits 15

Python Module Index 17

Index 19

i

ii

pyCarla, Release 0.1

A python module for synthesizing MIDI events and files from python code using any kind of audio plugin!

A python module based on carla and jack!

TABLE OF CONTENTS 1

pyCarla, Release 0.1

2 TABLE OF CONTENTS

CHAPTER

ONE

INSTALLATION

The backbone of this project are the multiple dependencies on which it depends. Since it’s difficult to provide a script
to automatically install all of these dependencies, here is a little handbook about how to install them.

1.1 TLDR

1. Use Linux: it’s free. For Windows and Mac, you can still install Carla and Jack by yourself; however, I refuse to
support non-free software.

2. In general, use https://pkgs.org to look for the command needed in your distro.

3. Install: jackd 1.9

4. Make sure that it is available in your PATH environment variable

1.2 1. Installing pycarla

pip install --upgrade pip pycarla

1.3 2. Installing jack

1. Ubuntu/Debian based: sudo apt-get install jackd2

2. Arch based: sudo pacman -Sy jack2

3. Gentoo based: sudo emerge -a media-sound/jack2

4. Fedora based: sudo dnf install jack-audio-connection-kit

For other Os, pre-built binaries are available at https://jackaudio.org/downloads/

3

https://pkgs.org
https://jackaudio.org/downloads/

pyCarla, Release 0.1

1.4 3. Installing Carla

After having installed the package, run python -m pycarla.carla --download to download the correct version
of Carla.

If you’re not in Linux, pre-built binaries for major OS available at https://github.com/falkTX/Carla/releases/latest

N.B. Configure Carla in `patchbay` mode (if you cannot use GUI, set `ProcessMode=3` into `~/.con-
fig/falkTX/Carla2.conf`)
To set patchbay mode in the GUI: settings -> Engine -> Process mode -> Patchbay -> Ok

4 Chapter 1. Installation

https://github.com/falkTX/Carla/releases/latest

CHAPTER

TWO

DEVELOPMENT SETUP

The next steps are only needed for contributing to this project. Do not follow them if you only want to use
`pycarla`

1. Install poetry: curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/
get-poetry.py | python

2. Enter root directory of this project

3. poetry update

4. Put all the Carla configurations that you want to use in data/carla_proj Note that you can use the default
ones, provided you have the same plugins available, otherwise you have to delete the default project files.

Tested plugins are:
• Pianoteq

• SalamanderGrandPianoV3

• Calf Reverb

1. Run poetry run python -m pycarla <a_midi_file.mid> to do a little test

5

http://freepats.zenvoid.org/Piano/SalamanderGrandPiano/SalamanderGrandPianoV3+20161209_48khz24bit.tar.xz

pyCarla, Release 0.1

6 Chapter 2. Development setup

CHAPTER

THREE

USAGE

3.1 Carla presets

1. Configure Carla in ``patchbay`` mode (if you cannot use GUI, set ``ProcessMode=3`` into ``~/.con-
fig/falkTX/Carla2.conf``)

2. python -m pycarla.carla --run to launch Carla and prepare configurations

3.2 Initialization

from pycarla import Carla, MIDIPlayer, AudioRecorder, get_smf_duration
carla = Carla("carla_project.carxp", ['-R', '-d', 'alsa'], min_wait=4)
carla.start()

player = MIDIPlayer()
recorder = AudioRecorder()

or
with MIDIPlayer() as player, AudioRecorder() as recorder:

[...]
pass

3.3 Playing and recording one note

print("Playing and recording one note..")
duration = 2
pitch = 64
recorder.start(duration + FINAL_DECAY)
player.synthesize_midi_note(pitch, 64, duration, 0, sync=True)
recorder.wait()
audio = recorder.recorded
if not np.any(audio):

print("Error, no sample != 0")
carla.kill() # this kills both Carla and Jack
carla.kill_carla() # this kills Carla but not Jack
sys.exit()

7

pyCarla, Release 0.1

3.4 Playing and recording a full MIDI file

print("Playing and recording full file using freewheeling mode..")
duration = get_smf_duration("filename.mid")
in the following, `condition` ensures that both the recorder and player
start in the same cycle
recorder.start(duration + FINAL_DECAY, condition=player.is_ready)
player.synthesize_midi_file("filename.mid",

condition=recorder.is_ready, in_fw=True, out_fw=True)
or asynchronously:
player.synthesize_midi_file("filename.mid", sync=False)
in this case, use
player.wait(in_fw=True, out_fw=True)
recorder.wait(in_fw=True, out_fw=True)
recorder.save_recorded("session.wav")
player.close()
server.close()

In future, there shold be a function that does this snippet for you

You can also use AudioRecorder and MIDIPlayer as context managers in a with block; in this case, skip the close()
at the end:

with pycarla.AudioRecorder() as recorder, pycarla.MIDIPlayer() as player:
do your stuffs
pass

3.5 Closing server

try:
carla.kill()

except Exception as e:
print("Processes already closed!")

8 Chapter 3. Usage

CHAPTER

FOUR

CLASSES AND FUNCTIONS

4.1 Carla

class pycarla.carla.Carla(proj_path: str, server_options: List[str] = [], min_wait: float = 0, nogui: bool =
True)

__make_carla_popen(proj_path)

exists(ports=['Carla:events*', 'Carla:audio*'])
simply checks if the Carla process is running and ports are available

ports is a list of string name representing Jack ports; you can use
‘*’, ‘?’ etc.

Returns
bool – running, false otherwise

Return type
True if all ports in ports exist and the Carla process is

get_ports()

kill()

kill carla and wait for the server

kill_carla()

kill carla, but not the server

restart()

Restarts both the server and Carla!

restart_carla()

Only restarts Carla, not the Jack server!

start()

Start carla and Jack and wait self.min_wait seconds after a Carla instance is ready.

wait_exists()

Waits until a Carla instance is ready in Jack

pycarla.carla.download()

pycarla.carla.is_within_directory(directory, target)

9

pyCarla, Release 0.1

pycarla.carla.run_carla()

pycarla.carla.safe_extract(tar, path='.', members=None, *, numeric_owner=False)

4.2 Jack Server

class pycarla.jackserver.JackServer(options)

kill()

Just calls self.process.kill() and reset this object

restart()

Wait for the duration of this ExternalProcess, then kill and restart. If the duration is not set, it doesn’t return

start()

Starts the server if not already started

4.3 Playing MIDI

class pycarla.midiplayer.MIDIPlayer

MIDI_PORT = 'Carla'

activate()

Activate the MIDI player client and set the connections.

If the Carla instance is not found, this method rase a RuntimeWarning. To avoid it, use Carla.exists
method. Note that Carla.start already does that!

clear()

clears the _messages list

synthesize_messages(messages: ~typing.List[mido.Message], sync=False, condition=<function
MIDIPlayer.<lambda>>, **kwargs)

Synthesize a list of messages

1. Connect the port of this jack client to Carla if not yet done

2. Send the list of messages to the Carla instance

If sync is True, this function waits until all messages have been processed, otherwise, it suddenly returns.
You can wait by calling the wait method of this object.

This function is compatible with freewheeling mode. Freewheel prevents jack from waiting between return
calls. This allows for the maximum allowed speed, but not output/input operation is done with system audio
(i.e. you cannot listen/recording to anything while in freewheeling mode).

condition is a function checked in the playing callback. If condition() is False, no message is sent. The
callback start playing at the cycle after the one in which condition() becomes True.

kwargs are passed to wait if sync is True.

Note: Mido numbers channels 0 to 15 instead of 1 to 16. This makes them easier to work with in Python
but you may want to add and subtract 1 when communicating with the user.

10 Chapter 4. Classes and functions

pyCarla, Release 0.1

synthesize_midi_file(midifile: Any, **kwargs)→ Process
Send midi messages contained in filename using self.synthesize_messages. All keywords from that method
can be used here.

midifile can be a mido.MidiFile object or a string

After the playback, ports are resetted

synthesize_midi_note(pitch: int, velocity: int, duration: float, sustain: int = 0, soft: int = 0, sostenuto: int
= 0, channel: int = 0, program: int = 0, **kwargs)→ Process

set up a list of messages representing one note and then calls self.synthesize_messages. All keywords from
that method can be used here.

4.4 Recording Audio

class pycarla.audiorecorder.AudioRecorder

AUDIO_PORT = 'Carla'

activate()

Activate the recording client and set the connections. Set self.channels and create one input port per each
Carla output port.

If the Carla instance is not found, this method rase a RuntimeWarning. To avoid it, use Carla.exists
method. Note that Carla.start already does that!

clear()

Clears the recorded array

save_recorded(filename)
Save the recorded array to file. Extensions supported by libsndfile!

start_frame is the frame from which recorded is saved (use it to discard initial delays due to Jack setup).

start(duration=None, sync=False, condition=<function AudioRecorder.<lambda>>, **kwargs)
Record audio for duration seconds. Note that this function blocks if sync is True, otherwise, this returns
suddenly and you should wait/stop by calling the wait method of this object which constructs the recorded
array in self.recorded

condition is a function checked in the recording callback. If condition() is False, blocks are discarded. The
callback start recording at the cycle after the one in which condition() becomes True.

This function is compatible with Jack freewheeling mode to record offline sessions.

kwargs are passed to wait if sync is True.

wait(timeout=None, in_fw=False, out_fw=False)
Wait until recording is finished. If timeout is a number, it should be the maximum number of seconds
until which the recording stops. A boolean is returned representing if timeout is reached. (returns False if
timeout is not set)

The recording stops when timeout or the duration passed when calling start is reached. In these cases, the
recording client is deactivated and the callback stopped.

waits while setting freewheeling mode to in_fw it then set freewheeling mode to out_fw before exiting

4.4. Recording Audio 11

pyCarla, Release 0.1

12 Chapter 4. Classes and functions

CHAPTER

FIVE

WHY SO MANY EXTERNAL DEPENDENCIES?

Python has no strong real-time capabilities since it cannot run with parallel threads. This method delegates most of the
realtime stuffs to external C/C++ programs, improving the performances and the accuracy against pure-Python based
approaches. Namely, the synthesis and the management of plugins is delegated to Carla, while the MIDI messaging
and audio recording is done in python using C Jack API.

This method is really portable and supports almost any type of plugins and virtual instruments thanks to the excellent
Carla:

1. Linux VST2/VST3

2. Windows VST2/VST3

3. LV2

4. LADSPA

5. DSSI

6. AU

7. SF2/SF3

8. SFZ

9. Any other format supported by external plugins

13

pyCarla, Release 0.1

14 Chapter 5. Why so many external dependencies?

CHAPTER

SIX

CREDITS

1. Federico Simonetta
federico.simonetta at unimi.it

15

https://federicosimonetta.eu.org

pyCarla, Release 0.1

16 Chapter 6. Credits

PYTHON MODULE INDEX

p
pycarla.audiorecorder, 11
pycarla.carla, 9
pycarla.jackserver, 10
pycarla.midiplayer, 10

17

pyCarla, Release 0.1

18 Python Module Index

INDEX

Symbols
__make_carla_popen() (pycarla.carla.Carla method),

9

A
activate() (pycarla.audiorecorder.AudioRecorder

method), 11
activate() (pycarla.midiplayer.MIDIPlayer method),

10
AUDIO_PORT (pycarla.audiorecorder.AudioRecorder at-

tribute), 11
AudioRecorder (class in pycarla.audiorecorder), 11

C
Carla (class in pycarla.carla), 9
clear() (pycarla.audiorecorder.AudioRecorder

method), 11
clear() (pycarla.midiplayer.MIDIPlayer method), 10

D
download() (in module pycarla.carla), 9

E
exists() (pycarla.carla.Carla method), 9

G
get_ports() (pycarla.carla.Carla method), 9

I
is_within_directory() (in module pycarla.carla), 9

J
JackServer (class in pycarla.jackserver), 10

K
kill() (pycarla.carla.Carla method), 9
kill() (pycarla.jackserver.JackServer method), 10
kill_carla() (pycarla.carla.Carla method), 9

M
MIDI_PORT (pycarla.midiplayer.MIDIPlayer attribute),

10

MIDIPlayer (class in pycarla.midiplayer), 10
module

pycarla.audiorecorder, 11
pycarla.carla, 9
pycarla.jackserver, 10
pycarla.midiplayer, 10

P
pycarla.audiorecorder

module, 11
pycarla.carla

module, 9
pycarla.jackserver

module, 10
pycarla.midiplayer

module, 10

R
restart() (pycarla.carla.Carla method), 9
restart() (pycarla.jackserver.JackServer method), 10
restart_carla() (pycarla.carla.Carla method), 9
run_carla() (in module pycarla.carla), 9

S
safe_extract() (in module pycarla.carla), 10
save_recorded() (py-

carla.audiorecorder.AudioRecorder method),
11

start() (pycarla.audiorecorder.AudioRecorder
method), 11

start() (pycarla.carla.Carla method), 9
start() (pycarla.jackserver.JackServer method), 10
synthesize_messages() (py-

carla.midiplayer.MIDIPlayer method), 10
synthesize_midi_file() (py-

carla.midiplayer.MIDIPlayer method), 10
synthesize_midi_note() (py-

carla.midiplayer.MIDIPlayer method), 11

W
wait() (pycarla.audiorecorder.AudioRecorder method),

11

19

pyCarla, Release 0.1

wait_exists() (pycarla.carla.Carla method), 9

20 Index

	Installation
	TLDR
	1. Installing pycarla
	2. Installing jack
	3. Installing Carla

	Development setup
	Usage
	Carla presets
	Initialization
	Playing and recording one note
	Playing and recording a full MIDI file
	Closing server

	Classes and functions
	Carla
	Jack Server
	Playing MIDI
	Recording Audio

	Why so many external dependencies?
	Credits
	Python Module Index
	Index

